Eigenvector localization in real networks and its implications for epidemic spreading
نویسندگان
چکیده
The spectral properties of the adjacency matrix, in particular its largest eigenvalue and the associated principal eigenvector, dominate many structural and dynamical properties of complex networks. Here we focus on the localization properties of the principal eigenvector in real networks. We show that in most cases it is either localized on the star defined by the node with largest degree (hub) and its nearest neighbors, or on the densely connected subgraph defined by the maximum K-core in a K-core decomposition. The localization of the principal eigenvector is often strongly correlated with the value of the largest eigenvalue, which is given by the local eigenvalue of the corresponding localization subgraph, but different scenarios sometimes occur. We additionally show that simple targeted immunization strategies for epidemic spreading are extremely sensitive to the actual localization set.
منابع مشابه
Immunization of networks with community structure
In this study, an efficient method to immunize modular networks (i.e., networks with community structure) is proposed. The immunization of networks aims at fragmenting networks into small parts with a small number of removed nodes. Its applications include prevention of epidemic spreading, intentional attacks on networks, and conservation of ecosystems. Although preferential immunization of hub...
متن کاملA general method for identifying node spreading influence via the adjacent matrix and spreading rate
With great theoretical and practical significance, identifying the node spreading influence of complex network is one of the most promising domains. So far, various topology-based centrality measures have been proposed to identify the node spreading influence in a network. However, the node spreading influence is a result of the interplay between the network topology structure and spreading dyn...
متن کاملIdentifying effective multiple spreaders by coloring complex networks
How to identify influential nodes in social networks is of theoretical significance, which relates to how to prevent epidemic spreading or cascading failure, how to accelerate information diffusion, and so on. In this Letter, we make an attempt to find effective multiple spreaders in complex networks by generalizing the idea of the coloring problem in graph theory to complex networks. In our me...
متن کاملNetwork construction: A learning framework through localizing principal eigenvector
Recently, eigenvector localization of complex network has seen a spurt in activities due to its versatile applicability in many different areas which includes networks centrality measure, spectral partitioning, development of approximation algorithms and disease spreading phenomenon. For a network, an eigenvector is said to be localized when most of its components are near to zero, with few tak...
متن کاملDistinct types of eigenvector localization in networks
The spectral properties of the adjacency matrix provide a trove of information about the structure and function of complex networks. In particular, the largest eigenvalue and its associated principal eigenvector are crucial in the understanding of nodes' centrality and the unfolding of dynamical processes. Here we show that two distinct types of localization of the principal eigenvector may occ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.05649 شماره
صفحات -
تاریخ انتشار 2018